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Introduction

Iowa State University Engineering Research Institute Project 911-S is

a continuation of WASA Grant NGRIG-002-029. The major areas 0% study and

goals of this research project are:

1) Determine the flow field generated by a finitely thick liftirg
three-dimensional wing with subsonic tips moving at supersonic
speeds.

2) Determine the flow field produced by a 1ifting elliptic cone

using finite difference techniques.
3) Study the problem of cross-flow instability associated with lift-
ing delta wing configurations such as space shuttle.

A six month extension of the current grant through December 1972 has

been obtained in order to complete th

Results obtained during the past year are presented through theses or reports

where applicable.

e first objective of the research project.
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1. Rectangular Wing Problem

The flow field associated with the forebody region of the symmeiric
rectangular wing has been determined for angles-of-attack of 0 and 4
degrees at a Mach number of 2, The original solution technique has been
modified to include the entropy boundary conditions developed by Mike
Abbett, thus replacing the reflection technique in the evaluation of
the nltimate body values of the flow variables. Although the application
of the boundary conditions as described by Abbett failed to yield a
viable solution in the cone region (the wedge region solution was satisfactory)
a suitable modification was made that did work, It would appear that in
regions of small radius of curvature (in the cone-tip region) the predicted
values of the velocity components on the body are not sufficiently accurate
to use as inputs for the Abbett technique which would continuously expand
the flow on the body. The modification consisted of using corrected body
data obtained via reflection as inputs to the Abbett technique.

The flow field associated with the afterbody region of the rectangular
wind is currently being developed. The forebody flow field data is transferred
to the afterbody grid system at the wind midchord point, thus generating
initial date for the afterbody. The integration technique and boundary
conditions used are the same as for the forebody. To date, the integration
has procecded to a point approximately 907 of the distance back on the
afterbody. In this region of the flow field on the body the cross flow
eigenvalues grow rapidly as the trailing edge is encountered forcing the
integration step size to be continucusly decreased. Since the normal
eigenvalues do not change apprecisbly along the afterbody the effective
Courant number at which the solution is being obtained in the normail
direction continuously decreases yielding a suboptimal solution ir the
normal direction in the region near the trailing edge of the wing. The
situation has been improved somewhat by decreasing the number of grid
points about the cone tip. It would appear that the afterbody solutions

will be completed in the very near future,

TURE wbr e o ¥ W R o




The afterbody solutions will be used as initial data for the wake
region integration. No problems are anticipated in the wake integration
which should be completed shortly after the afterbody integration is

furnished.

2) Elliptic Cone Flow Fields

Appendix A includes the thesis "Finit - differeace solutions to the
equations of fluid flow around an elliptic cone" by Phil Pratt. This serv-
ed as Phil's M.S. thesis and deals with the second part of the current effort.

The results presented compare favorably with both experimental and ana-
lytical data available. The only question arises when one notes the persistent
oscillation in body pressure which occurs approximately 115° around the ellip-
tic cones both at zero and non-zero angles of attack. This question should
have been answered by a more complete investigation. However, the funds avail-
able for computer time and the time requirements precluded further investigation.

Since Pratt's work was completed, a new program has been written for solving
the elliptic cone flow field. This has been done at the direction of the NASA
Technical Monitor Dr. Kutler and will be used both in further studies of the
elliptic cone and the cross-flow instability problem. This program is currenti-
in the de-bug stages. A complete description of the new program will be presented

in a later report when computed results are available.

3) Cross-Flcw Instability Problem
The third part of the curreat effort is tc study the problem of cross flow
instability associated with very small radius of curvature areas such as the lead-
ing edge of the shuttle wing. This phase of the study will begin after the com-
pletion of the elliptic cone flow field study. The programs resulting {rorm the

elliptic cone study are necessary to the cross-flow investigation.

4) Other Work Partially or Wholly Supported Under the Current Crant

A) Numerical Advection Experiments




Appendix B is a paper which has been submitted to the Journal of
Applied Meteorology for publication. This work was partially funded

through the current grant and is included here. Behrooz Fattahi was the

Graduate Assistant working on that particular paper.
B) Undefined Problems
Jim Daywitt has been supported by the current grant during the past
year and will be starting on his thesis in September. His thesis topic
is still undefined. It will be in an appropriate area dealing with firite

difference methcds in aerodymamics.
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NOTATION

Coefficient matrices of the gis dynamic 2quations
Semimajor axis of the body

Semiminor axis of the body

Characteristic length >f the body

Matrices of conservative variibles ( Appendix A )
Identity matrix

Unit vectors on the x,y,z dir2ctions

Unit vectors in the radial, normal and cross flow
directions

Total enthalpy

Mach number

Dimensionless pressure

Dimensionless velocity vector

Dimensionless velocity vector in the a direction
Radial vector ( Fiqure 1 )

Radius of circular cross section in computational
systen

Fntropy

Dimensionless velocity components of ;
Dimensionless velocity components of 5;
Vector of independent flow variables

Coordinate directions in the physical Cartesian
systen

Coorlinate directions in the computational
Cartesian systea




Subscripts:
c

C

tan

R e | O

Angle of attack

Ratio of specific heats
Increment in the B-direction
Increment in the ¢- direction
Increment in the F-direction

Mesh ratio

Mesh ratio

Angle through which flow is 2xpanded or compressed
{ Appendix C )

Coordinate directions in the :zomputational polar
systom

Dimensionless density
Eigenvalues

Vector operator

Pertaining to the circular cone

Crcss flow coordinate direction ( Pigure 1)
Pertaining to the elliptic cone

Mesh point in the 6&-direction

Mesh point in the pB-direction

Maximun

Coordinate direction normal t> the body surface
( Figure 1)

Radial coordinate direction ( Figure 1 )

Tangential component
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4f2 X,Y,2 Partial derivatives with respect to X,y or 2
;f x',y', 2" partial derivatives with resaect to x',y* or z!
?7 1 Fiow variables after the predictor
' 2 Flow variables after the corr2ctor
® Freestrecam condition
£,6, B ra-tial derivative with respect to £,84 0r3

superscripts:

i ~ oredicted value cf flow variables or intermediate
RN matrix forms

o n spacial step location in integration
o ., Superlayet, sublayer

Dimensional guantity
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SUMMARY

s The solutions to the equations of wotion for inviscid

PR SIS

fluid flow around a pointed elliptic con=2 31t incidence are
presented. The numerical method used, MacCormack's second
order preferential predictor-corrector finite 1if ference ap-

. Proximaticn, is applied to the fluid flow equations derived

S

in conservation-law form. The entropy boundary condition,
hitherto unused for elliptic cone problems, is investijated

T and compared to reflection boundary condition solutions. The
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Stagnation streamline movement of the inclined elliptic cone
is noted and surface pressure coefficients are plotted.

Also presented are solutions for an elliptic cone and a
circular cone at zero incidence and a circular cone at a
small angle of attack. Comparisons are made between these

present solutions and previously published theory.
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INTKODUCTION

The reduction of complex bodies td simpler configura-
tions in investigating aerodynamic charictaristics has long
been accepted practice. Leading edges of thin airfoils have
been assumed to be wedges of finite ( or infinite ) span, and
fuselages have been assumed to be circular cones attached to
cylinders. These assumptions enabled th2 sci2ntist/engineer
to apply analytical methods to acquire solutions to the par-
tial differential equations of fluid motion. However, as the
aerodynamic "state of the art" grew, the confijurations bhe-
came more complex, and the "simplifying”"” bodies became more
complicated. Thererfore, it was necessary to seek improved
and more efficient methods of solution.

The applicability of numerical methods to the solution
of differential equations had been long known ani understood,
but it wasn't until the advent of the high-speed digital conm-
puter that efficient use could be made of these methods. Al-
though these numerical approaches are quite amenable to many
problem types, they should not be regarled as panaceas. Many
times, aore pruhlems ate created than solvel] with the intro-
duction of the numerical technijues., Difficulties with nu-
merical stability, accuracy, coaputer tiwe anil storage re-
quirements, and applicability of the numarical metnods to the

physical situation often cause seTious problems.




This paper 1s primarily concerned with the num=2rical sc-
lution to nonlinear conical flow and, in particular, the flowv
around elliptic cones at incidence. Th2 circular cone has
been the accepted configuration for modeling the supersonic
flow about bodies of revolution for decades. However, for
non-axisymmetric bodies immersed in a supersonic stream, the
circular cone is of little use. Therefore, as Van Dyke (295)
points out, the elliptic cone may become the model for these
geometries. Furthermore, elliptic cones provide certain
aerodynamic characteristics that surpass %tnos2 of their cir-
cular counterpart { e.g., from Chapkis (7), greater L/D ratio
for the same cross sectional area per unit height ). Evi-
dence of the impact of the elliptic geometry can easily be
seen in present-day lifting body and space shuttle designs.

The problem of the supersonic flow field surrounding
these bodies has heern investigated by Perri (3,9,10), Van
Dyke (25), Melnick (19), Kahane and Solarski (13), Jones
(12), Chapkis (7), and Martellucci (18), and others, with
varying degrees of success. The papers by Ferri (10),
Martellucci, Chapkis arnd Jones were of greatest assistance in
this study, since they not only presented theoretical compu-
tations, but also numerical and experim2ntal comparisons.

The publications by Ferri (3,9), Van Dyke, and X2hane and
Solarski were pasically of theoretical content. Melnicx's

Faper was of special interest, because 1t succinctly ex-
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plained the streamline pattern and vortical singularity probh-
lems near the body.

South and Klunker (24) indicate twd> general approaches
to the solution of nonlinear conical flows, The first in-
cludes the "diétance asymptotic" methods, where initial con-
ditions are chosen near the conical apex, and numerical inte-
gration proceeds downstream until conical similarity condi-
tions ( defined later ) are satisfied. The second 2pproach
consists of "conical" methods that invoke the conical solf-
similarity, then reduce the problem to two iniepa2ndant vari-
ables, There are different variations to the approaches
above: Rakich (22), Chapkis, Mactellucci1 and Ferri utilize
different forms of the method of characteristics; Kahane and
Solarski propose Ward's elliptic slender body theory; and
South and Klunker implement the method of lines ( m2thod of
integral relations ). For a brief history of these develop-
ments, the reader is referred to South and Klunk=2r (24).

The method chosen for this study wis the "distance as-
ymptotic" method, utilizing a firnite difference approach.
ilowever, this approach was modified slijhtly to 2nhancs sta-
bility considerations. Instead of intejrating lovwnstroeam
until convergence was attained, the integration was initiated
at some point £, and a solution at sose point € ¢+ AE was
obtained. This solution was then used as the initial condi-

tion for another integration step at point €. A more de-




tailed explanation of tiie reasoning and procedure is prasent-
ed later.
The elliptic body surface vas definad mathematically,

and boundary conditions were applied at the body surface and

X,

the unknown shock position. Freestream values for pressure,
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density, and velocities vere used as initial conditions so

T

e

-5 that the numerical representation of the shock build-up was
.g. as i1f the cone had been impulsively started. However, the
,é transient numerical flow field behind the shock may not rep-

X3
1%: resent the actual flow field until convergence has been
| % attained.
§ The equations of fluid motion were simplifiad by as-
: suming: 1) negligible viscosity, therefore eliminating
< boundary layer effects; 2) negqgligible h=2at conductivity; 3) a
perfect gas; and 4} conical flow, resulting in isentropic
é. flow along streamlines. The physical properties of conical
;. flov are such that pressure, density, v2locities, =2nergy and
-g; entropy remain constant along rays emanating from the conical
'fg apex ( i.e., the aforementioned conical similarity ).
%
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PROBLEM FOEMULATION AND METHOD OF SOLUTION

Introduction

In the numerical solution of a flo4 problem, selection
of the coordinate system, numerical technique, initial condl -
tions, and boundary conditions 1S of priae jmportance. Al-
though presented in a somewhat disjointed manner, these con-
siderations are quite important. For example, the choice of
a coordinate system nmay depend upon the manner in which the
boundary conditions are applied and/or the numecical tech-
nigque chosen. In turn, numerical stability andl accuracy may
depend on the manner in which the boundary conditions are em~
ployed and in the choice of coordinate systen. Initial and
boundary c~nditions are easier to derive if the coorainate
systen is as straiqhtforvard as possible. However, different
coordinate systems have different eigenvalue structures and
therefore di f farent stability chatacteristics.

This section atteapts to delineate the approach imple-
gented in setting up the elliptic cone problenm. To acquire a
sore comsplete anderstanding of this approach, frequent refer -
ence to the appendices is suggested. An atteapt is made to

keep this gection free f[romR lengthy, tedious derivations.
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Coordinate Systenm

The coordinate systenm chosen, shown in Fiqure 1, was t
result of a double coordinate transformation. The first
transformation, from the Physical Cartesian systanm, {x,vy,z),
to the computational Cartesian system, (x',y',2')., converted
the elliptic cross section to a circular cross section ( see
Figure A-1 ). This constituted a stretching >f the semimaijor
and semiminor axes, a and b, of the elliptic cons by a factor
of b and a, respectively; provided a,b > 0.

As a result of this transformation, angles around the
body in the Yr.Z-plane were not conserved in the Y',z'-plane.
Evenly spaced angles arouni the computational Cartesian body
produced rays that "clustered" abcut the B - 300 meridian in
the physical flane ( see Figure A-1 ). The r=2lation

governing the angles is given by:

-1
= ¢ 1
B tan [ ; tanBc] ’ M

vhere Bc is the coaputational plane body angle. This behav-
ior is beneficial for elliptic cones of large eccentric.ties.
For these cases, flowv near the B = 900 maridian is of qgreat
iaportance due to the presence of large gradients in the flow
variables. Using this transforuation allovs mor> mesh points

to be concentrated in this area, therefore monitoring the
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flow more closely.

The second transformation carried the computationa cc-
tesian plane into the computational polar plane, (E,648)
seen in Figure 1. This systen allowed for thz2 easy applica-
tion of the elliptic boundary conditions to the circular cone
( described in more detail later ), while retaining the coni-
cal similarity of the flow field. For the numerical integra-
tion method chosen, requiring a coordinite axis to be coincCl-
dent with the conical axis ( i.e., x = x*' = E) yielded
simple functicns of the gas dynamic variibles in conservative
form ( see Equation #-11 ). These functions could then be
easily solved to yield explicit functions of the gas dynamic
variables.

Wwhen the aforementioned assumptions ( 1) negligible
viscosity; 2) negligible heat conductivity: 3) perfect gas;
and 4) conical flow ) were applied to the equations of motion

of fluid flow, they yvielded the following equations for con-

sideration:
X-Homentus: (P + pu?), ¢+ (puv)y ¢ (puw), =0 (2)
Y-Nomentum: (pmv), *+ (P ¢ pvl), + (pvw), =0 (3)
Z-Momentum: (puw), * (pvw), + (P ¢ o), =0 ()
Energy: ;-(63 - :’6}) = 0 <)
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Coptinuity: vo(eg) = 90 . (6)

However, these »quarions are not yet in 1 forn that will
allcw numorical computation., They must first b transtorned
to *he computarional polar cooriinate systa2n to b> I9n spatant
with the goometry of th> problew., Then, sinc=: the transfor-
mation gives rise to nonkomogen20ous terns, th2 rjuations must
be expanded to coasarvartion-law rform td> ascomddate the numer-
ical method, Tais is dore in Appendix d. For nam>rical sijy-
nificance, ard as a matter ot general practic2, it is conve-
3 rient to rnondimensionalize the flow parameters. Th» nondi-

mensionalizat ion scieme usedl is present21 in tppandix 7.

Yumerical Method

The numerical meth> 1 chosen 4as MazCormazk's (16) =second
order preferential preldictor-corrector, utiliziny a forward
1ifferencing predictor stzp and a backwardl differencing cor-
rector step. Thisi method was shown by Kutler (93) to b su-
pecinr to firsr orlzar ani mary second orier methods in terms
ot computer time anl std>rage, proygramminy 2152 ani accourvacy.
The mothod is o1 finitte lit€erenc: techrniju~ that 15 termeld
whroterent 1al” heeciane the diftronctiny lirection 1n tho pro-
Jrctor oand cotrocctor stop . can b chang2d oat will, providsg?

the o chab jes ate conntatent with the s2-ond orl v 1ccuracy,
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Wher applied to a system of equations of form:

E, + F, + G, =0 , (7)

MacCormack's predictor-corrector is written as:

. ~n+l n A a n AX , .n n

Fredictor: E = E - =-(F - F - (G -5 )

i,k Bk oy Pk ik T a2 Tkl Tk

(8)
~ N1

Corrector: E™L - 3" Forl Ax bl oy

J,k J)k f:k AY jak -'-1’k

_._Af.(r?m '\;;n-% y 1.
Az ik Y §

However, as cdan be seen from Appeudix A, the system of oqua-

tions kas the fora:

To accomodate the nonhomogeneous term, it was necessary to

add the quantities:

Preiictov: -~ HY Ax

jr (1)
Corrector: - ¥H" o«

ko

to Equations 8.
Por two-dimensioral fiow aroundi cir-ular cones, aaplif; -

cation theory predicts the nuamecical mothod is stahle, prn
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numerical accuracy. In effect, the numerical method was con-
tinuously operating at ( or near )} the optimum mesh ratio.

As can be seen from Appendix D:

{o

ax ‘ (14)

A
b 1A _ g L
g
so that after a4 number of downstream integrations, the numer-

ical method would no longer be functioning optimally.
Initial Conditions

Initial conditions for the flow variables caa be chosen
in at least two ways. First, the shock shape and position,
and values of flcw variables between tha2 shock and the body
can be approximated. This method is quite efficient wvith
regard to computer effort, if the approximations are reason-
able. Moretti (21) indicates that the choice of initial data
does not aftect the end results. Secondly, the individual
tlow variables can bhe initialized to frazestream values. Al-
though quite inefficient, this method was chosen since it
resembles impulsively starting the body. Even though the
transient, numerical values for the flow variables between
the shock and body surface may not coincide with the true,
physical solution, the shock build-up can still be wvitnessed.

Appendix £t shows hos the freestream quantities were derived.
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Boundary Conditions

From analyticai considierations, the exact boundary con-

dition applied to the surface of the boly is:

§-VF(E,8,8) =0 , (15)

where 7 (E,86,8) - 0 i3 the ejiation of the boly. Also,
across the shock sur€ace, the Rankine-injoniot ogquatinns must
he satisfied., However, numericil methois cannot use these
equations directly. This is especially tru2 of finite 21°-
ference methods, ju= to their differencing natiara. There-
fore, egquivalent numerical bourdary conlitions ware derived
andi applied at the body and shock.

The reflection boundary condition 1sel in this study
( see Appendix 3 ), assumel even functions of pr2ssure, den-
sity, and tangential velocity and an odil function of normal
velocity across tane boldy surface, This Jave th: nozoassary
sublayer data point:s, as a function of kthe known superlayer
points, reguirel by the MacCormack predictor stap. Since el-
liptic cones have a plane of flow symmetcry abd>ut tha B = 00,
1800 merilian ( s2¢ Figure 1 ), numerical integration was
carvied out over one half the conical sarface, This plane >f

symmetry foras inotaner “ourdary across ¢hizh pressure, jensi-
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ty, u-velocity, and v-velocity were assumel to be even func-
tions and w-velocity was assumed to be an odd function.

The mesh in the direction outwvard from the body, in tha
direction of increasing 8, extended far enough to overiap the
estimated shock position. In this manner, the shock could,
at best, be captured between two mesh points. Pressure, den-
sity and velocity outside the shock wer> assumed to have
freestream values.

Due to first order numerical accurizy in the MacCormack
predictor, the velocity vector, E,, vas not, in general, tan-
gent to the body surface as dictated by Equation 15. The en-
tropy boundary condition ( see Appendix C ) used by Abbett
(1) accounted for this misalignment and "brought" the veloci-
ty vector back to tangency by utilizing a local compression
or expansion through an angle A6. With A6 known, the
pressure, Pz, following the expansion or compression was cal-
Culated; and with pressure known, density, b, ¢ at the body
was obtained ty utilizing the perfect gas equation of state,
From energy considerations, the velocity magnitudas, |€2|, was
found. Finally, from vector relations inherent in the flow
geometry, the direction of the resultant velocity, ;2, Was
obtained. A complete derivation is presented in Appendix C.

For this problem, it was necessary to apply the entropy
boundary condition after the predictor step. No analytical

proof for this conclusion is readily available. However, it
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is polioved thar the immeliate application of tha entropy
boundary condition ( i.c., 1fter the praiictor ) allows the
corroacted surtace houndiry conditions ty be proniagated into
the flow tield so00ac1, resulting in bett>r numerical bderav-
ior. 1n this srudy, application of the boandary condition
after the corrector resulted in instability, sinze 1 continu-
al expanzion was eventually attained, which dcove the body
surface pressur2 to zero.

The boundary coniitions for the elliptic cone were de-
rived in the physical Cartesian system ind transformed to the
computational polar system, This resulteil in the application
of the ¢lliptic bouadary conditions to 1 circulac cone.

Since the numerical methol discretized the boly, the moethod
could deduce the brdy geowetry only throigh the boundary con-

dition relations,

Method of Solution

The coorldinate system presented was sele~ted primarily
becanse it yielled a circular cone in th2 computational sys-
tem. T™he significtance of this, apart from the previously
pnentiones ipversion simplifications,. was that bounliary ~ondi-
tions could ke applied 9 2 constant coodrdinate surface

( ©.9., constant civenlar cone anqgle, 8 ).
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The desired elliptic body shape could be acjuired by
choosing appropriate values for the semimajor and semiminor
axes, a and b, and the characteristic length in the bcdy axis
direction c, which governed the slenderness of the configura-
tion. After transforming the elliptic body to the computa-
tional gmlar system, the number of angular increments around
the conical body ( NBETA ) were chosen, and the outermost
sbock position ( SHOCK ) vas estimated. Thes2 choices de-
fined the mesh increments, 4B and A8 , used in the aumerical

integration, as follows:

(16)

As = (SHOCK - Come Semiapex Angle) .
NDELTA

Integration was performed from B = 09 to B = 1809 in the
positive sense of trigonometry ( see Pigure 1 ). As indicat-
ed before, the B = 0V, 18092 meridian is the plane of flow
syametry and therefore reflection across this plane was used.
This reflection compensated for the backvard and forward
differencing requiremsents of the MacCormack predictor-
corrector sequence,

For the reflection boundary condition, the predictor and

corrector steps vere completed before the boundacy condition

vas applied. This approach desmonstrated good stability char-
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acteristics and yielded satisfactory soclutions. AsS previous-

ly noted, the entropy boundary condition was applied after

the predictor step.
Progran execution was terminated automatically wvhen the

convergence criterion was mel. This criterion Wis defined

as:

- 1\ < € (1\7)

vhere p" is the present pressure, Pn'l is the pressure of the

grevious iteration, and € is the convergence tolerance ( usu-
ally ¢ = 0.001 ). Equation 17 was satisfiad for ten consecu-
tive iterations before the execution vas terminated. This
gave rise to a conservative jeviation of 0.1% per iteration.
The program logic and underlying theory wvere first
tested by investigating circular cones at zero and small
indices. Agreement vith other accepted solutions ( €.9-.,
pabenko, et al. (4) ) wvas such that the approach vas deened
valid, and the elliptic cone problea was then confronted.

Results of the conical computations are reported in the next

section and the elliptic cones are treated in the sections

following.

e b M
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TiiF CIRCULAR CONE

In orider to test the viability of th2 approich in the
previous section, the reflectior and entropy bdoundary condi-
tions were appliedl to a 8 = 102 pointed, circulir cone at M
= 5.0 ani angles of attack of o = 0°9 anl 5°. This zircular
configuration wi1s selected for a number >f reasons. First,
in the past two 1rcades thoere have been many circular cone
stulies, so that much cormparison data ware availible. Sec-
ond, the conicai flow assumptions made conzerning the “low
field around the elliptic cone Wwere alsnd vilil frr the circu-
lar cone, Thus, the same approach could be usel for both
problems. Thiri, havinjy a constant coaciinat? sarface, the
circuldr cone was mathematically simple to iescribe ani an
easy body to waich boundary coniitions z>ull b= appliei. Fi-
nally, some measure of merit was necessary to julga2 the qual-
ity of the reflection and entropy boundary conlitions. The
circular cone, With its plethora of comparison material, sat-
isfied these necessities,

The initial concern vwas for the num>rical lacation of
the shock. Due to the €finite differenc» mesh, the shosk
could, 4t best, be captured hetween tvo mesh points. Zecause
of this, the st~p discontinuity in the 1:rivativas of flow

variabhles across the sicck could nit be representel exi:tly

by the numerical mzthod. Theretfore, thare was some doubt 13
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to whether the shock position could be azcurately depisted.
However, as seoen from Fiqures 2,3,4% and 5, th> shock position
is clearly defined and reasonably accurite. Figure 6 shows
the numerical suock position overlying Badanko's (4) compari-
son Aata. The shock positions calculat=21 by ~aza houniary
condition were juite close and are representel by the same
data point in the figure. AsS can easily be szen, *the numeri-
cal shock position representation is quite good. For tae =
0° case, the angqular shock position, from NACA R-1135 (14),
is & 17,79, while th» numerical angulair shock position was
calenlated to be 6= 15,09,

For the circular cone at zero angl2 of attack, the en-
tropy boundary -condition invariably yiali2i1 a baettar ropre-
sentation of cho pressure and density variation sutwarl from
the bedy. Figures 2 and 3 show that th2 2ntropy bouniary
condition yielded ovressure and density solations that match
those of Babenky, while the reflection hounlacry coniition
yielded solations that were 1.5% *o 2.0% high. Althoujn ob-
viously not as rocurat= as the ontropy bounlaryv coniition,
especially at rhe bhody surface, the rveflectionr bourniary con-
dition shouald not be compietely discount=3, Ju~ to slow con-
vergence properties of the reflection boundary conilition, an!
a premium an computer time, the numerical intaqration wa. -
teruinat~d before converqence. However, as int2jration con-

tinued, rthe reflection rouniacy condition soliations ap-
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proached those obtained by Babenko.

For tite circulur cone at angle of attack ( a = 59 ),
these same trenis were witnessed. The conical bddy at inci-
dence gave rise to pressure and density gradi=nts around the
body., This effact can he seen in Fiqur2s 4 ani 5, where
prtessure and density are plotted for thr2e angular positions
( B = 09, G60° anl 190° ) around the boly. Th2 winlwarl si1d=
(B = 180° ), the 1ogion of qreatest cowpression, 13 aptly
depicted by the outward pressure variations from tha2 hody to
the crisp numerical shock., The leeward side of the boidy (g
= 09 ), the region »f least compression, shows 1 somewhat
poorer pressure and shoctk representation. This is Iue to the
eigenvalue structure and its previously notad effects on the
numerical inteqration around the body. |

0f greatest concern vere the density anom4ilies at t+the
body sucface, seen in Pigures 3 and 5. This misbehavior re-
sulted from the as.,umptions made regariing tha the flow neac
the body and tho :inbsequent reflection boundary coniition.

To oliminate this problem, the entropy houndary condition was
applied after the numerical process had been brought to near
convergence usiny the reflection boundary conditior. This
led to the most dramatic evidence of th2 benefizial traits »>f
the entropy boundary condition., Piqure 7 shovws the efrfect of
the entropy boundary conrdition. For th2 o = 0° case, the

reflection density solution at the body was low oy 26%, but
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when the entropy boundary conlition was usei, th2 body valu2
of density coincided with Babenko's resilts. This same ne-
havior can be witnessed for the a = 59 -ise, although
agre2ment at the body i35 not exact.

It was tound that for contiguratisis havirng gridiants Oof
flow variabloes in the lataral direction ( the B-=liraction ),
the numerical :solution lemonstrated a "11i1g" when the entropy
boundary condition was applied, After only a f»w intejra-
tions ( 1 or 2 ) utilizing the entropy coniition, solutions
on the boiv wer» very close to the comparison data. However,
as integration ~oantinued, further convarjeance wis painiully
slow.

The introluction of the entroapy boaniary condition did
not datfect the boly pressure as much as it d4il the holy den-
sity, since the retlectior boundary contition yi2li»d anod
representative pressure values. From Figuce 3, for the a =
09 situation, the entropy boundary condition again bhrought
the surface pressure solution into accorlince with the com-
parison pressata solution, ror the a = 59 case, tha charac-
teristic lay was auvain ancourntered,.

Theso preliminacy results led to th» contlusion that the
enttopy houndary condition better repres>ntel th2 17tual flow
field for the circelar cone., Therefore, iu2 to the af rromen-
tioned wimilariticva botwecn the elliptic and ciccular cone

probloms, 1t wa concladed that the entcopy bouniary conli-

et
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tion would yivll the better representation of th2 £low arouni
the elliptic cone. dith this dedaction, the plan of atrack
on the eliiptic cone Was formulated.

The geometry and orientation of th2 configuration would
be d2fined, and numerical integration, 13:ing *the reflextion
boundiary conliition, would bhe used *o aczquire 1 nearly cor-
verged soiution,  Tols solution would thon be compated to ex-
isting Jdata and, it jocited satisfactory, woull b2 used as
iritia) corditions tor rurther numerical integration, 1ncoc-
porating tiae cntropy Lounlary conlition. This int2gration
would He continued uatil converjence (o0 neat convergencs )

was attaiped,

R s
RS i DT
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THE ELLIPIIC CONE

Introduction

A major proklem in studying the sup~rsoric flow ibout

elliptic conesn i the meager supply of 17cassibls ollintic

core comperi sor data,  3oth analytic dati and safficiont ex-
perimental intormation ar> difficult to acquire. Hoyweover,
with the avaiiable literatire arnd consiicration of the ‘
elliptic-circular ccne similarities, a "thumbnail sketsh" of
the ellivtic cone oroblen can be divined.

Melnick (13) indicates the presenc2 of vortical singu-
larities in the- semiminor axis olane, at *ho surfacs2 of an
elliptic cone at incidence. According ¢35 Melvrick, those vor-
tical sinaularitios, arising from the inviscii flow as-sump-
tions, are the torminal points of the 22035 flow streraiine..
Melnick then concindes that "entrovy, deasity ani ridiil ve-
locity atrc generally wultivalueld at thes> points." Moretti
(20) states that the absence of viscous affects not only
limits the validiitv of the solution, but also roquices the
anjle of atrack tu be less than the conical samiapex angle,
if a lieeward shock is *o be observed. Tn Sears (22), Ferri
calls attention to the pnassible 1ift-off >f the leeward vor-

tical sinqularity as anale of attack is increisel. Since the

angla of attack war kept small, the vortisal 1ift-o0ff wi: not
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For the clliptic cone 4t zoro incitrnc=, ths =ftajniation
streamline pasuses through the siock andl i7ping2s on the «1-
liptic cone in the B - 99°% »lane., Thus, the 2ntire elliotic
surface, with the possible exceostion of tha2 vorticil singu-
larities, is an isentropic stream surfaz=2. sSinc2 the loca-
tion of tae streamline impingement is known for tha rero in-
cidence case, nuperrical cialcnlation of the boiy 2ntropy is
facilitateld., liowever, (ol the angle-of-attack case, the
stagnation stieamline strikes the elliptic holy somaswhore he-
tweoen B AN aal 1409, Jevending on the flow volocity and
the angle ol attack, Tte exact locationa of ta: imping2ment
15 pin-pointed where the cross flow velo>zity i35 zero.

To €find th> ontropy on tae rPody, th2 entropy of tne

stagnation streamiine must be calculatel. R®ut sinc? the nu-

«Q
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merical technique discretizes the flow field, tha stagnation
streamline away from the bodiy can only b2 approximated hy
some interpolation wvethod, This may leal to molerate ->rrors
in sur face ontropy values and is a2 sourt» of further stuiy.
Anoth:r otigrr of probtlems 35 the area n2ar tho = 109
plane, To this reaoron, the large gradients of the flow vari-
Able are it ticult to calculate precisely, du2 to the d1s-
cretization of the tlow field., This behivior couli, quite -

possibly, give rixse to the chavacteristiz "lay"™ nnt=3 ot the

S

circular cone solntions and accentuated in ths nllipti- cone




LA L R LK L

24

solu*ions. A more accurate description of th2 flow fi=ld in
the B = G° region coull b> acjuir=d by furthar clustering of
data points in this area,

In order to facilitate tke comparison wich Chapkist (7)

result i, the toilowing patameters were ~hosen for the 21lip-

tic cone at zer1o inacidence: a/b 2, ¢ = 5.6667 and Moo= 5.
For the ellipti: cone ar angle of attack, coamparison with
Martellucci's (17) theory regquired an elliotic cone with dif-
ferent defining paramet:rs, These param2ters were efined as
follows: asb = 1,788, ¢ = 1.0 and ¥ = 3.09.

Zero Angle of Attack

As ir the circular cone staly, €ircst consilaration was
given to the ukock position around the boly. iHowever, 1ue to
the lack of anrilyticil corroborative mat=rial, som2 amount H>f
intuition must be usel in judging the numerical results.
Chapkis (7) inlicates that the shock sh>uld be ~los2r to the
bodvy in the serimajor axis plane than it is in the seaiminor
axis plare. This is Aue to the high pressure region near the
elliptic "shoulder” ( i.a., near the B = 909 plane ) ani to
the resulting pressure jraliont feoa th~ shouller towarl thef

00 anl 1802 plans:i.  This observation is verifiedl in

Fiqut« 9. The shock position:s calculatat by rach bruniary -

condlition werye ossentially coincident, Yaximia pressyre vas
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cbserve!l at the 5tagnation streamline, 1hcitel on the g - 300
plane, which 1nlicated the presence of 1 srrong shostk. As
mentionel betore, the ontropy valie regqiired hy the entropy
boundary condition was calculated using tlow variables ac-
quired from this plane.

The variatior Hf sarface pressure =ietfizient around the
ellipric boly is presentel in Fiqure 10, The reflection
boundary condition natches well Chapkis' (7) th=a2dretical
data, except ir the range 87° < B < 100°, which roughly coin-
cildes with the region ¢ createst body curvature, The solu-
tion obtarined using the entropy boundary condition, also
shown in Figure 10, is far from the tha2syratical 2xpactations.
The figure irdicates A more constdant surface ovrassuce coef-
ticient tor 99 < g v 200, while the 700 < B < INO ragion Jem-
onstrates a sharper surtace vressure coxfficirnt aradient, A
veak local oxpansion in this latter region woall explain this
behavior, although *+his is pure conjectuce. (This will be
discussed in qgreater detail in the follysing section.) Due
to the symmetiy o the flow, the region 332 < g < 130° shoul?d
match the 00 < B < A00 region., However, Fiqure 10 shows an
anoaaly near B 115C foyr koth bonundary ~onditions. At this
point, either sumeriacal “overshoot" or »igenvilue problems is
snspected, Pue to VYack of computer funding and time, 1 more

tirorough ctualysin could not be carried sat,
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Angle of Attack

For the angle-of-attack case, the shock position around
the body was ajain 1nvestigated. The r2sults are pres-=nted
in figure 9. The point at which the shack most clesely ap-
proaches the body indicates the strong portion of the shock
and the approximate location of the stajnation streamline.
As the angle of attack was increased, th2> stagnation stream-
line moved in the Jdirection of increasiny B. Por g = 59,
the location of the stagnation point on the body was B ¥ 9RO,
The uncertainty about the lateral stagnation point, anl the
extension of the stagndtion streamline into the flow field,
vere major sources of di fficulty in the application of the
entropy boundary condition. Without a recasonibly accurate
approximation of the stagnation streamline position, entropy
on the body surface coul? not be accurately calculated.
Therefore, th= boundary condition was lass reliable.

Figure 11 shows the variation of surface pressure roef-
ficient, calculated from each boundary co>ndition, around the
hody, ccrpared to Martellucci's (18) theora2tical data. Gen-
otally speaking, agreement is good; howaver, the 509 < B <
40% region is cne notable exception.

It seems intuitive that supersonic flouw around a corner

( such as the flow trom the stagnation point around the el-

"m4
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liptic shoulder ) would eXperience a slitat, but noticoinlo,

expansion., No theoretical evidence of this was found in the

literature availanle; however, experima2ats zonductel by

Zakkay and Visich (26) for a similar elliptic cone subjecte}

to similar flcw conditions, but at «= 159, s2em to verify

this conj=acture.

Fijure 11 appears to indicate a 1ocally =xpandisd flow
for both boundary conditions in the previously notei 500 <gq
< B09 region, although the entropy bouniiary conilition viellds

4 more pronounc2d hehavior. In Figure 12, the density around

the body is plottead, showing the entropy ani refle-=tion

boundary condition behavior. No comparison dita was avail-

able, but the behavior seems to lend cradence to the “"expan-

sion hypothesis.®

The validity of the underlying theory ani issumptions,
and the applicability of the entropy boundary condition for

more closely approximating surface flow Characteristics, have

been demonstrated, More thorough investigation of the numer-

1cal behavior ot the entropy boundary condition ani a wore

concise method for

obtaining the surfaca 2ntropy are needed.




S0t

28

ACKNOHLEDGEHENTS

The author vwishes to express his appreciation to Dre.
pale Anderson for his quidance throughout the course of this
study and to the lowa State University Enginearing aesearch
Institute and pepartment of Aerospace Enjineering for finan-
cial suypport. The author also wishes to convey 1 speacial
thanks to his wifte, connie, for her patience t hroughout the
period of his guaduate education, without her encouragement
and dauntless optimism, this graduate degree would have been

post difficult to obtain.




BIRLIOGRAPHY

1. Abhett, %, Onarterly “enort, Aerothara Project 61147,
Aug. 1971%.

2. Ander:on, 9. A. and Voas1l, J. M., "Namorizal Solutions
of Flowticlds Nehind Rectanqular Wings,® Fugineering Re-
search Institute, Towa State Gniversity, Amoes, Iowa, July
1971.

3. Anilerson D. A, 1nd Vogel, J. Me, "Nimorical Zal-ulations
of Flowfi~lds," Onarterly PReport, Enjinanaringy Rasearch
Institute, Iowi State University, Am>3, Iowa, July-Aug.
1971,

4. 2abenko, V. I,, Voskresenskiy, G. P., Lyubimov, A. N. ani
usanov, V. V., "Three Dimensional Flow of Ti=2al sas Past
Smooth Bolies3,"™ NASA TT F-380, Apr. 1966,

5. Briags, d¢. R., "The Numerical Calenlation of Flow Past
Conical Moli=s Supporting Elliptic Corrical Shock Wavas at
Finite Angles of Incidence," NASA TN 2-340, Nov. 19450,

be  3rook, J. W., "Tke Calculation of Ninlinear sup>rsonic
Conical Flows by the Method of Integral Relationy,”™ “light
Dynamic: kescarch and Techns>loqgy Division Report nu-7,
July 1904,

7. <cChapkis, R, L., "Hypersonic Flow ov:r an £lliptic Cone:
Theory and Txperiment," Journal of tho» A2rospace Sciences,
Vol. 2R, No. 11, Aug. 1953, rp. B44-354,

8. Farri, A., "“Supersonic Flow Arouad Circular Zones at
Angles of Attack,*® NACA TN-2236, Nov. 1959,

9. Terri, A., "The Linearized Characteristics M2thsd anAd
its Aoplication to Practical Nonlineac Supersonic Proh-
lems," NACA TN-2515, Oct. 1951,

10. Ferzi, A., %Ness, N, and Kaplita T. T., "Supersonic Flow
over Conical foidies without Axial Symmetrcy," Joucnal of
the Acrospace Scienans, vol. 20, No. 8, Aug. 1953, 4o,
HHh 39571,

t1. tord, R, A., ®An Approximate Solution for Axially iym-
Metric Flow over o Core with an Atta~hel Shork Wave," NACA
TN-IURS, Oet, 1556,




s

12,

13,

14.

15.

16.

17.

18.

19.

20.

21,

22,

-

30

Jones, De Jdes wyumerical solutions of the Flow rield for
conical Polies iR A Suporsonic stream," Nat ional Aeronaus
tical Rstablishment, Ottawa, ~ainala, \eronautical Renort
LP-507, ( NERC No. 10361 Y, July 1968.

Kakanv, A. and cplavrski, Aes "Suppr;oni: Plow About
5lendor Bolies of Elliptic Cross section,” Journil Of th>
AeTOHPACE Selence S, vel. 20, No. a8, \ug. 1953, PpPL.
513-524.

Kutler, P« "Application ot selectal Finlite niffer=2nce
rachniques tO the solutior o€ Conical FloV problams," Uun-

puhlishﬂd on.D. Thesls, jowa State niversity, Ames. Towi,
oct. 12649,

raboratory pesearch staff, Ames Research Centel, Moffett
Field, califorria, wrquations, rabl2s, an? charts for
Conpressible Flow," NACA R-1135, 1953.

vomax, He, Zutler, Po and Fuller, F., "Th? yumerical So-
lation of cartial pDif ferential Equatidns Governiny <Convecs
cion," Ames rosearch Center, Moffett ?i2ld, Califotnia,
159,

mazCormack, d. de, "The Eftfect of yiscosity in qyperve-
locity Impact Cratering,™ RIRA paper VO. a5-354, 1997, P©
1"7-

martellucci, A., wyn Extension of th= rinsarizal charac-
teristics pethod for calculating the Supers9NiC Flow
Around Fllintic cenes,” Journal of th2 A2radspace Sci=ncas.
vol. 27, Ho. 3, Sep*. 1960, PP- 667-674.

melnick, R. E.. wyortical Singulacitios in Conical
Flow," ATAA Journal, Vvol. g, No. 4, \or. 1967, pD.
A31-637.

poor>, Fe ¥eo “Three—Dinensional pouniary Lyer viow,"
Journal of the Aerospace 5ciences, vol. 20, No2. 3., Aug.
1953, pp. S25-534.

moretti, G., wipnviscid Flov Field aAbdut a point :1 Cone
at an Angle ot At tack,” AIAA Journal, vol. S5, NoO. 4, Apr.
1367, PP 189-T41.,

Rakich, Jo Voo "Applicstion of the wathod of Chitacter-
jutics to Noucitculac wodies at Angl» of At tack,"” 50=-228,
gct. 1963, Amcs pesearch Centel, Mostatt rieli, califor-
niae.

.......




23.

24,

26.

27.

31

Sears, W. F., ed., general Theory 2f High Speed Aerody-

namics, 1st ed., vVol. 6, Princeton inivarsity Press,
Princeton, New Jersey, 1965, pp. 721-746.

Soutlh, J. C. and Klunker, E. 3., "M2thols for Calcu-
latina Nonlirear Conical Flows,"™ SP-223, Oct. 1969, Ames
Research Conter, Moffett Field, California.

van Dyke, M. D,, "The Elliptic Cone as a o121 for Non-
linear Supersonic Flow Theovy," Journil of Fliul Mechan-
ics, Vvol. 1, No. 1, 1956, rp. 1-15.

Ward, G. N., "Supersonic Flows Past 5l2nd>r Pointe]
Bodies,"™ Quarterly Journal of Mechanics and applied “athe-
matics, Vol. 2, 1949, pp. 74-97.

zakkay, V. and Visich, M., Jr., “™Fxperimental Pressure
Distributions on Conical Filiptical 8odies at M, = 3.09
ind 6.0," folytechnic Institute of 3rooklyn, PIBAL Report
No. 4n7, Mar. 1959,




Gad

- ."R.

.

4

32

GapL1p300°

1ETCG

13 TPUOTIEINCECD

{

aanf1d

CvoenprE

N

» -

g

. [ B,




e g7 R .
. * dl&!

= 0 3®
o0 = 6
aanbti
=d cs@ tsuer1qd ¢ X
yy c3 1ewiod sinssaxd gseluol
o UL 112 ©
sucod JEInLAE

o1 ¥ 4 ‘aanssaad ssajuoisuauld
£

. 0°0
1 0’1 m.o ol
G'¢ 0°¢ Y ,
I
|

't 0t

%
q21l ¢
Y
uo13aIpuod A1epunod Adoaxjuz m
o
9 \6‘0 p
uo13IIPUO) Kaepunod uoj3oe13ad 1. “
‘18 3@ ‘oquaqed ——

1
3
-

33

|
"a}
-t

|
o
it

¢ ‘Apog 243 woij paemano uot
°

1
L

~

-t

N (ERL TS I A o



e B

34

18 T | T Y
17 Qfl%> -
‘\lv
. —
T~

e, 16 - S TA -
R ~
)
O
m
v 15 - -
<
&
=]
6
)
U4
T 14 |- -
©
2
&
3
o
& Babenk t al
213}t —— Babenko, € . i
ored
° .-0-- Reflection Boundary Condition
[-Y]
E —&— Entropy Boundary Condition

12 -
&
2

11 - -t

o
,/
10 1 i T ;fl;
0.0 0.5 1.0 1.5 2.0 2.5

Dimensionless Density, P X 10!

Fiqute 3 pisensionless density normal to the cicrcular cone
at a = 0°




Il

Al P S B R i, e o, L

20
v

~--~®~=- Reflection Boundary
Condition

Angular Position Outward from the Body,

-

Dimensionless Pressure, P x 10°

Dimensionless pressure normal to tha Citrzular cone

..

N e S i i«

N

;
!



36

F X
-

e -
[- ] [e ]

Angular Position Qutward from the Body,
-
&

Babenko, et al.

e.<>-.Reflection Boundar
< Condition y

-a-Entro Boundary
Condglion

1.5 2.0 z.5
Dimensionless Density, p x 10°

Disensionless density normal to the circular cons




Babenko, et al.

—@— Present Results

Pigure 6 Shock position around the cirzalar cone
at X = 09 an}l 59

A

N A T

e TR Y

PN, NIy ey



38

v

kytsuap 1ei123¥®71

L eoanbti

Lo w0 ENE

oyoo ATTAIITL e 3Cy UCTAGGL TR
LG R1Tw Apeg (2a93e1
08l oL1 091 oc1 ot 0tl ozl o1l 001 o6 08 OL 09 05 0% og o¢ 01 0
T Y Y v ¥ v Al | SR ¥ T 1 — ¥ T Y ()
uo13IpPuod
£aepunog £doajuld ——
- uoF3IFPUCD _ - ———— 01
£ xepunog uoF3Id213¥ -<0-- _e )
o R
.18 3 ‘ojuaqed — - 3
ol 5
.....Q..ll..@..ul..é;...l.éll..&ﬂ\.ln@unlléll\éullt@.!l == = .
= o0 = 0 P . s°1 “
\G\\ P g -
\\ m
)]
[y
«
=
x0T
L4
»
)
%
46°C
N | L | J O-ﬂ

BE— .\
\ g S




-~

i
e

cdCl I% 7

.G ‘@18uy Apog ieid3e]

-

€Uy 10j) UCT4NYTIISTE alnssoaid [elsie] ¢ o1Inbrj

081 041 081 0ST1 O%1 o0ti 0c¢l OI1 001 06 08 (0J4 09
Y Al v

AJ A A 1 L] 1 v
uci3TPUoOd
Kiepunog Adoajug -~~~

- uoT3TpuUOY
A1epunog uo13daizoy @

‘1 33 ‘O)quaqeyq :

39

4 0%

|
o
w

(01 X d ‘eanssaid ssajuojsuawWIq




ORI o peme o i et i

il

40

Shock

©,0

= Prescnt Rosults

a=0°

___ Shock

rigure 9 Shoeck position atound the elliptic oone
at @ = 0° and 5°

,,,,,,




N

41

o0 =
QGOU UH&Q&AHQ @Lquwrn\AUﬁuHu)ﬁdﬂ n.u:..wmmu& Hﬁ

o 3
e3P}

oL eInbti
.6 ‘918uy Apog jeidle]
08l 041 091 0ST o%l O€T OIZ1 OI1 001 06 08 OL 09 0S5 O% Of 07 OI

Y Y T T L ¥ ¥ T 1 ] Y L T v L T T

£1epunog «uwmuwwam-;q|

uol3fpuo
L1epunog WOMWomwwwx -0

£x09y] ‘syidey)

0°¢

0°¢

D ‘jua}ol3Feo) 2anssaad Idoeyans

©
k|

01 X

0°8

0°6




Omﬂd&m
SUCD DT3IATTIE® €Yl 303 UOT4NQTIISTE 23ussald (edelze] ({ 21inf1j]

.9 ‘218uy Apog 1®I9jE]
08T 0LT Q91 0ST O%T o0g1 o0¢T OIT 001 06 08 OL 09 0§ oY o 0¢ 01 0
T T T T T i T T T T T T T T T T T 0°0

uci3lIpuod
= Kaepunog Adoijuy --%--

uorljfpuo)
Kaepunog u033da[jey —O@-—

Axoayl ¢toonyiaiaxel

D ‘3Ua}O}3IJ20) Ianssaad dIovjans

Q9 === adnd - -
3 S sl > R - Foy  yd g
- ,LMﬂl. <4 0°¢
Ly -]
®
—
o
1 '8 i ] i 1 | 5 I 1 1 A i 4 A J 1 A 1 O.Q ~
[ * -

© i ke ?ﬂ?*.mﬂﬁ‘ﬂ%ﬂ#,{. -

.

i L IERs SR PV

T R N r T




oG = 0 3I®
5u0o 0T13dTTI& @u3 JCI UCTINGTIISTE A3Tsuap T[eId el 7| aaubty

.9 ‘@18uy Apog 1ead3e]
081 041 091 0ST o%l o€1 021 O11 001 06 08 oL 09 oS 0O% 0o¢ 0¢ o1 0

Y T T Y T 7 T T T v ¥ T 7 Al \J T T 0°S
- -10°9
- - o.h
2
= o - O.ﬂ W
- D —— - 2
- P - % o6 §
- Vol ot e R =
uo}3 FPuo) - ... 8
- £1epunog uoTIdN(I3y —O= 0°0T o
’ =
? i 1011 &
=
- & Jo'z1 3
—o- -0~ 0 g ¥ o
< A qo-e1
-t oo mh . ~Ou
L e oy do-91 *
Y4 p
Y _# =
[~ . 0°91
B Jo1
e 2 | i y - L A Iy 'l ys A A A A J A J | O.ﬁﬂ




44
APPENDIX A: COORDINATE SYSTEM AND CGNSERVATIVE EQUATIONS

Coordinate Systenm

The coordinate system chosen, Figure 1, reguired two
transformations to acquire the final computational system.
The first transformation was from the Cartesian systen,
(x,Y,2), to the computational Cartesian systenm, (x*,y',2'),

via the transformation:

x' = x
y' = ay (A-1)
z' = bz ,

where a and b dare the semimajor and semiminor axes of the el-

liptic cross section, respectively.

k+1

Transformation A-1
~— —

Figure A-1 Coordinate system transforaation




4on

The effect of the transformation proviilel by Ejuaticus
A-1 is the Jdeformation of the elliptic cross sections in the
Cartesian plane into circular cross sections in the computa-
tional plane, see Figure A-1,

The general equation for a right elliptic cona 1s:

S e N ¢ I (A-2)
b a c

w
7]
@O
®
=

Referring to Figure A-1 and Equations A-1, it can b

that Equation A-2 can be written as:

2

CAS SR A L VS S S (A~
C

-

~

The final transformation takes the coaputational Jarte-
sian system into the computational polar systam, (8,%,8), by

utilizing the Jeometric relationships in Figure 1:

£ =x' =x (A-4)

6 = tan-'llllll + (z')]%] (A

)
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Conservative Equations

The MacCormack second order preferential predictor-
corrector requires that the equations of fluiil flow, Egqua-
tions D-6, D-7, D-8, D-9 an? D-10, be written in
conservation-lav form. These fluid flow equations can he

written in matrix form and represented by:

E,L, ¢+ F +G =0 => E,. + aF_., + b5, =0 . (A-7)

The desired form is:
E, ¢+ aF obcaori:o. (A-8)

Fros the chain rule and algebraic manipulations, Equation A-8

becomes:

4

(cosacotb)GGJ =0 . (A-9)

1
E.’. - (! cosbsin5)56 + a[(écos’&cosﬂ)?b - (lcotésirB)FB]
+ b

(cos’ésina)c6 +

1
g

vw |

Wwith € # 0, i.e., away from the conical apex, th2 consurva-

tive forms is obtained as:

(E§]K0 [-¥sin 26 ¢+ (aP cosP + bG sing) :35’6)6

+ [(-aF sinB ¢+ bG cosp) :otblB (A-10)

*+ [(cos 28 - 1)E ¢+ (aF cosp ¢ bG sing) (coté ¢ sin 28)) = oO.

X
Gy R




; w

'3_; From Equation A-10, the matrix represenataion of the fluid

Vfﬁé flow equations in the computational polar systen becomes:

R E( puj -%{pu) sin 25 + ( a(pv)cosp ¢+ b(pw) sing)cods
DU E(P+pu2) + -%(Ptpu?)sin 26+ (a(puv)cosp + b{puw)simg)cos? §
- E (puv) -%(puv)sin 26+ (a(P+pvi)cos B+ b(pvv)sinp)cods
iy E(puv) |, -%(puw)sin 256+ (a(pvvw)cosp + h(P+pw )sing)coss
- # (-a(pv)sinp + b(pw)cosB)cot &

S | (-a(puv)sinp + b(puw)cosp)cot &

R (-a(P+ pv’)sinpg ¢ b(pvw)cosB)cot 8| (A-11)

s (~a(pve)sinp + b(P+pw? )cosB)cot & 5
R
'?§ -2(pu)§in'5' + {a{ev)cusp + b(pw)sinp) (coté + sin2d)

& + [~2(P¢pu )sin?s + (a(;mv)cosﬁ + b(puvw)sinp) (cot s + sin2b) | o

-2(0uv)sinz6 + (a(P+pu")cosB ¢+ b(pvw)sinB) (cotdé + sin26)
-2(rPuw)sin? g + (a(pvw)cosp + b(P+ pw?)sinp) (cot & + sin2s)

which has the general form of Equation A-8.
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APPENDIX B: THE REFLECTION BOUNDARY CONDITION

The equation of the elliptic cone in Cartesian coordi-
nates can be given by:

' Fix,¥,2) = (%)’ vz - o (8-1)

Due to the conical flow nature and the fact that the body may
ke replaced by a stream surface, the exact boundary condition

is:

1}

0, on the body, (B-2)

al
<
s, ]
L]

so that the velocity relationship that must be satisfied on

the elliptic body surface is:

cle
el

& - zr(d (8=3)
c Y a

<

E‘

Ah alternate way of expressing Equation B-2 must be found, so

P

'g’4 that the numericai method can be used. From the geometry of

g L

the problem, see Figure 1, it can be seen that:

a9, =1 qx i B-4 -
Uy = 1y ¥ (3 % i) (B-4)

lagt =a- Ty . (3-5)

SRS - Y



. "‘ -'. "j"f"‘ﬁiﬂ;'ﬁmj .’ .m L WM gk ; AN AR G = s L ;rv.-;' i et o

o e

From calculus:

e -
lN = 9; =

| VE} x* z z2

so that Equation B-4 becomes:

— - 1
Tean T (ML - W 5,024 M1
X (WY + ¥X Z (¥Z2 . 4Y
L@+ 2O+ 565 v,
X £) - - (B8-7)
(% GF + 1D - LCF - b
and Equation B-5 becomes:
a = - B-B
qul % [ g{-r %% + :ﬁ] ' ( )
vhere
a. 24+ x4 24" (8-9)
[ b a'] .

In the ccaputational polar plane, equations B-7, B-8,

and B-9 beconme:

Yean™ Ghfanitgoss , tarsgide, v, 1 tangceid , wtaphajad

ab? 32 a?bc?
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(Y tanbcosB tan’s §;iﬁ . tan’s COSBSiQB]
abtc? a?h? a3p3 ’
|
u tanbs;na tan? 699§a§;n§ tan 5cos’f |
[T a?bc? a3h? C_n alp? n ‘
(B-10)
and
|a | = 1 ,=u v _tanécos é v _tanbsirf (B-11)
NooglgEt ab? ath |,
vhere
2 H . 2
= 8 g B -12
d [114_§an (cos 4 Sin )] (B )
c a‘b b a .
The reflection boundary condition chosen assumes:
a1 ¢ = - g - -
IQNI qul (B-13)
and
- ‘ = Eaed - -
'qtan| 'qcan' ¢ (B-14)

vhere the (*+) sign indicates the values at the first mzsh
layer above the body ( superlayer ), and the (-) sign indi-
cates values at the first mesh layer below the body ( sub-

layer ). This component reflection can he visualized as:
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—_— - _— - — L — Superlayer (+)
: qtan : qtan
Body Suriace
' 1
- - —_— —_ Sublayer (-)
q qtan ;N qtan

Figure B-1: Component Reflection.
Fquat ions B-10 and B-11 actuilly yield an overdetermined
system. Since chere are only three unknowns (u , v _ and w),

only three relations are needed. Let:

-

“qtan ‘l ’ 'qtan',' 'qtan|,) ’ (8'15)

vhich has form identical to Equation B-10. The system of

three equations necessary to solve for the three unknowns is:

- . - - el - -

19,1 Ig, ! (B-16)
Va7 = 19e0n 17 (B=17)
9an 13 = 19¢an!ls - (8-18)

Thus from Equations B-10 and B-11 the following is acquired

for the boundary condition relation:




P TSR . e A
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$19y0 _ & (zu’, tana®vf cosp , ¥ sing (B-19)
dat’ c? ab b a
- - & £, &
lq,__ | = 2(M_tang cosb 14+ tan' 6 _sinB v
can |, = Gyt (—L20E +(L+ a2 )
- ¥ tan’ & cosesing) (B-20)
adp?

tg li = (.5 y? [u.i__tﬂ_fliiii_n.ﬁ. - \L:t t:alm'tst cosgsing
tan’s T T3t a?hc? a’h3
+ (s tan?s cosja) . ! (8-21) \
c* a‘p" ¢ I

where the (+) superscript indicates that the variables are
evaluated at the superlayer and the (-) superscript inlicated
evaluation at the sublayer.

Equations B-19, B-20 and B-21 constitute a systen of
three equations and three unknowns which, when written in

satrix form, become:

r - . W r -<
-1 tanb cosp tané sinp u
c? ab? a‘b
tapb coss 1 ,tan’t sina -tap’t cosasing v
ab?c? ch a'b? alibp3
6"sinB  -tan'8cosBsinB 1 , tan’t cosp v .
L a‘be? albp? c* a p* i

)
o VA GG

)
R
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- - )
-1q,1 4
N e
_ o -2 -
: 19 ¢an!, (4) (B-22)
g
'qtan'g @1)2
! £

Cramer's rule can now be appliedl to Equation B-22 to deter-
mine the desired values of u-, v-, and wv-.

Pressure and density are assumed to be even functions
across the body boundary so that their normal derivativa can
be set equal to zero. This yields the pressure anl density

boundary conditions:

pe+

H

p- (B-23)
and

ot = p - (B-24)

' } j
M ERE T, oo e oo .
e e A+ BRI § S RPN, T IR A T

A
& ¥ iRy -

R
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APPENDIX C: THE ENTFOPY BOUNDARY CONDITION

From the explicit predictor, ?,, p,, u,, v, ani w, are

known, while P,, p,, u

2 v, and w, on the boly are Jesired.

20 Y2

The assumption is that since the predictor has only First
order accuracy, i:: (u,,v, ,¥,) on the body will not be paral-
lel to the body surface as Jdictated by the exact boundary
condition, Equation EBE-2., Instead, ;, will be canted at an
angle, +A9, with respect to ;tan , thus 3jiving rise to a nor-
mal velocity component at the bhody surface. This result does
not satisfy the boundary conditions given by Tquitions B-2
and B-3., To rectify this, the entropy boundary condition
used by Abbett (1) provides a‘local compression or expansion,

depending on A6 to "hring" i: back to tangency.

Body Surface

Firure C-1 Velocity vector jeometry,
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From Figure (-1, it is seen that:
AN
gs o L = cos €= sin(49) (C-1)

so that,

-t
AB = sin

Q@ .1 , (C-2) .
{ '-%:"' N ] |

vhere +A6 denotes an expansion and -A9 Jenotes a compres-

sion. Carrying out the operation indicated in Ejuation C-2

yields:

-U; X v
- SE 4 VY

60 =sin” [ gZ " b
19,1 4

P fx
T

] (C-3)

A
wvhere d is defined by Equation B-9 and iN is as in Fquation
B’6 .
From NACA R-1135 (15), the static pressure after turning

the flov parallel to the body is determined by :

PPy - yBN00), 4 AM(ye M - u(nl- 1) (00) , 0287

vhere M, is found froa:

LR 1. UL 4
: D
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L, PR 'a.'l = |&:| = (u'2+ V-z+ U:z) %. (C’S)
a, YD, % [ 12K
(-Eﬁ (-Eﬁ

Note: P, , Pp., M, 19. 1, and a,are all nondimensional vari-

ables as defined in Appendix E, unless otherwise specified.
From the eguation of state, p; = p2 (S,P;), SO that:

P, - Py constant v (C-6)

vhich yields the relation for the density:

1
P T,
P2 = Py ['f,f‘]

(c-7
where P, and p, are obtained from the plane containing the
crossflow stagnation point. For zero angle of attack, the
crossflow stagnation point coincides with the B = 90° plane

( see Figure 1 ).

From the energy equation, total enthalpy is found as:

hy= . B, 14 (C-8)
T ;—."1[-{’::1 o 1630 Rl
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vhich yields the velccity modulus, jgq,| :

- X
e 21 BY) (c-9)

Note: In Equation C-8, P, P, and liﬁ are in dimensional

foram.

Thus, the magnitude of the velocity vector tangent to the
‘ - -
surface is found. 1In order to determine q2, a unit vector in

the direction of 3, is defined as:

A

g, £ 02w | wi.d.v . (C-10)
19,1 1921
From Figure C-1,
- - ~ =% -y -t Q b
9, * 9tan = q2 =9q,- (q - IN, lN . (C-11)

* i . - L.
Therefore, q9 is in the direction of q,.but it is not neces-

sarily true that |Eg| = lazl, due to truncation error. The

A
unit vector, iqz, can nov be formed as:

>
|}

tq’ = 93 (C-12)
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Carrying out the cperations indicated in Equation C-11

yields:

qz°=§[lh- 1(u’- Lu-n_u)]
42 * c» b2 2 12¢2

vi o -u%x; + Ly !&15
[ ;’( be b* * a‘b )],

1, - (C-13)
LOMIE L u e )

vhere d is &s in Equation B-9. Finally,

-

q, = lqz' g3 = 192 1q (C-14)
1951 :

can be calculated.

Since numerical computation is performed in tha computa-
tional fpolar systeam, the appropriate equations abova amust be

transformed using Equations A-1, A-4, A-5 and A-5. This

vields:
- “du 4 tand w.cosg . Mo sing.
40 = sin'i [ ct’ ap g * e )] %} (C-15)
((ul *w'ew}) (1 tan’s (cos'B ; =iD'B )]
c* a?lpi’ p2 at
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and since &? = (ud,vp,w?):
ud = u,- - ¥ tanbdcos8 _y _tanésinp C-16
? (§)’[':n ab’c’L albe? ] ( )

H 2 2 2 .
V= Va W ;apbggsﬂ -mrmaé - n_t.:.n_ig_o.iﬁiz.nﬂ (C-17)
? ' Q%’f ab‘c a‘p* a’b ]

W= %-(gy[nng¥§§%ns_.g tgn?ﬁgosasins_,g,tan’asina] (C-18)
a?bc

alp?’ a*h? R

vhere d is from Equation B-12. FPinally,

a _ w3 lé}l . U3 2 . P2y 3 (C-19)
LH idy ey (1 - 90
and likevise,

v, = v3 l;z‘ and w; = w$ |a,| . (C-20,21)
Iail il

The crossflow stagnation points are located at the
points where ac = 0. The derivation for the radial and
crossflov velocity components acre now presented.

Prom Figure 1, it can be seen that:
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i
Sf
L F -
SR R = (x,Y,2)
S A A A (€-22)
g Iy .
Sb where lNiS from Equation B-6 and
e § .
'“Tﬁ %{ = B o= __(x,y,2) \ (C-23)
m;fgr IR (x2+y2422) v
b
}iA% so that,
g_sﬁ
'37§ A T (C-20)
D ¢ =i x i = YZ - YR) (X% - + X¥)] -2
o SRt et GG - xh (% xp)

vhere d is from Equation BR-9 and

D= (x?2 ¢« y2 z’)!5 . (C-25)

From Pigure 1, it can be seen that:

A
1T =9 - i (C-26)
and
- - N 7
g ! =g - ip (c-27)
i However, since numserical computation is 1gain performed on -

the computational polar system, the transformation equations,
Equations A-1, A-4, A-S and A-6, must be appliel to tquations

C-26h and C-27. cCarrying out the indicated opearations, Equa- i
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tion C-26 becomes:

. tand  u(b’-a®) tandcoBsing_v(alec?) sind w (b +c?)cosp

19 1= S "t M— aThc? ' apic: L
14 tan®8,co sin L TR tan®8 .cosB , sin ‘B
T+ (TP+T’_ﬁ ] [€‘+ azb? bz | az )]
(C-28)

and Equation C-27 beconmes:

- u ¢+ tané (vcosB , wsinB )
g1 = a b .
R 1 + tan?6  cosip sin2 . .%

( ( az T )]

(C~-29)
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APPENDIX D: EIGENVALUES

The matrix form of the governing partial dAifferential
equations of fluid flow in the Cartesian systam is written

as:
AG_ + BT +Cd =0 . (D-1)

However, to acquire a form amenable to the MacCormack second
order predictor-cotrector technique in the computational

polar system, Ejquation D-1 must bhe rewvwritten into the form:
U_ ¢ KN'BU + A'CU_ =0 D-2
€ 5 B ' ( )

vhere A, f, B, ﬁ, C and C are nxn matricas, n being the order
of the systea, and ;T = (u,v,v,P,p).

To derive Equation D-2, transformations must be made
from the Cartesian system to the computational polar systenm

using the chain rule anl the transformation Equations A-1,

A-4, A-5 and A-6. In this manner, Equation D-2Z becones:

Gg « [6.+ ak'Bby ¢ bA"&'b,]Tib + [aA"Bp, ¢ bA"?:'g,,]ﬁB =0,




e ad g

63
A =R
B = A& + aBby + bCly (D--4)
and
C - a’\B’BY‘ * b’EBIJ L)

Now the matrices A-18 and A-1B msust be found. The par-

tial differential equations of fluid flow:

X-domentum: (P ¢ pul) ¢ (V) ¢ (puw), = O (p-5)
y-Momentum: (puv), + (P ¢ ovl), + (pv¥), = 0 (D-6)

' 2-Momentum: (puwvw), * (pvw), *+ (P ¢ pw?), = 0 (D-7)
Energy: ;.('b - =2%py) =0 (D-8)

continuity: gelpd) =0 (D-9)

;ﬁ
'z

where from Kutler (1), c? = (%%—ﬂs , yield the matrices g,

”~ ~
B and C. The desired quantities are then obtained as:
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2 +u? Ty 0 0 7’1"
, @) (er-ule ol ~u )
= g : 0
= K B
=
%
E A = -y 0 0 1 0 (o-19)
4 . u !
£ |
TTout o crout
% -2u ‘_1 0 0 -—5!"“.1 L
1 c? -u? ci-u s et
&
-, B RS
L __‘T\L‘Lz _-crz—— 0 v J
c’-u cT-u’ p(c®-ut)
0 A 0 = ’
1} pu
% - 0 0 v 0 2 =t
u
ve? -puc’ 0 ouv_ 0
ci-u ct-u? cz-u?
pv - P 0 S— P 3
cT-u cT-u? u(st-u’) .
and

1“‘\
*
pd
4
i
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—_
Y 0 c? v 0
c? -u? 2 -u? p{z2-u?)
0 w 0 0 0
u
A C = 0 0 v 1 0 | (D-12)
u N
puc? 0 -guc2 -uw 0
c? -u? A -u? Z2-q2
pw 0 -pu -w W
c?-u c?-u? u(ci-u?) u

utilizing Equations A-1, A-4, A-S and A-6, Equations D-U can

be rewritten as:

A =1
3 = - I cosbsind + a A'B cos’scosp ¢+ b A'C cos’ssing
€ € 3 (D-13)
C = -a B cotbsinp + b A' C cotécosp
€ €

The eigenvalues, danl eventuaally the linear stability

bounds, are found by solsing the charactaristic aquitions:

n
o

det (B - ol ) (D= 14)

and

"
o

det(C - I ) (D-15)

SR TR
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and obtaining the characteristic roots. The resulting eigen-

, 3 values are:
B ) Lo/ = -cosbsiné+ cos’s (avcosp + busing) (D-16)
15253 g ug
!
i Cag = [-[(avcosg + bwsirg) ucosé + sind]
(c¥T-u¥)

+ {[(avcosp ¢+ b¥sing) ucass + sins 12
(c?-u?)

-sin?6 -2(avcosp + bwsing)ucosésing

R NN A L PR it L

‘. (c2 -u?)
+ (avcosp ¢+ bwsing)® cos?s
(cT-aT)
-(a'cos?s ¢+ b?sin?g )cicos?s % cos b (D-17)
(c®-u’) £

and

A = (bwcosp - avsimg)cotd (D~ 18)
1> 253 ug
)\“ = [(avsina - bwcospg) u

(c?-u?)

+ {(avsina - bwcospg)? _u
- (ct-u?)

+(avsinB - bwcosBf __1 _
(¢ -u?)

-(a?sin?B ¢+ b?cos?s) c? }*cotb . (D-19)
(c?-u?) 3
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APPENDIX E: NONDIMENSIONALIZATION AND INITTAL CONDITIONS

Nondimensionalization

The dimensional flow variables B, 5, G, Vv and ¥ are

nondimensionalized to P, p, u, v and v as follows:

(E-1)

(E-2)

u,v,v = u,v,w (E-3,4,5)

! . . ——
) )
©
(]

L Initial Cond.tioas

From NACA R-113€% (15);

Y =Y
Bso1e znad, VT o b A LS (E-6)

1 -
P 2 v 2

-1
Po= (1 u;.un.:; D= 1 (%1)!:, BT

&=t (~¢1)n3,] D q = n.,[1 + (y_-_nn;]” (F-8) -
2

L g 4 NI T B SR T e e
. .
g
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APPENDIX FP: INVERSION

From Appendix A, Equation A-11, define:

Ey = Epu

’ E, = E(P + pu?)
Ey = Epuv
Ey = Epuw .

then the flow variables can be found as:

v ‘—‘_E_,
E'
w = Fg
E'

WED 1 - (Y=1) 4.1 . (Y=1) (VI + W )a®

ey t{E- U wNS 3

E, (Y*7)
Y

p = Er
ug

P=E - P
£

The (¢) sign in Equatiocn F-7 is used because the flow is

supersonic.

(F-1)
(F-2)
(F-3)

(F-4)

(F-5)

(F-6)

(F-7)

(F-8)

(F-9)
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Abstract

Second- and third-order finite difference methods recently applied

to problems in high speed fluid flow are applied to the model advection
equation cast in ccnservative form. The differencing methods considered
use forward time differencing with preferential space differences em-
ployed in the predictor-corrector sequences. The free parameter required
for stability in the third-order method is ad justed to cause the solution
to be either minimum dispersive or minimum dissipative in nature. Results
indicate that the third-order method using minimum dissipation is the

most accurate method tested. Computer time requirements are approximately

twice those needed for second-order techniques.




1. Introduction

Numerical integrat ion of the equations describing atmospheric
rmotion has become commonplace since the advent of the high-speed digital
computer. Techniques used in performing this integration have varied

. widely in order of accuracy, programming ease and computation time
required. This paper deals with application of recently developed
gsecond- and third-order techniques to the advection process using the
differential equations describing advection in conservative form.

The accuracy with which a finite difference method models advec-
tion within the atmosphere is difficult to assess since the governing
equations are extremely nonlinear. Molenkamp (1968) has suggested that
representative numerical methods be applied to a simple problem whose

exact solution is known in order to compare the results obtained through

the use of each technique. The results of his investigation show that
higher order numerical methods more accurately model the advection pro-
cess. Molenkamp concludes that of the methods tested, the Roberts and
Weiss (1966) technique most nearly approximates the exact solution.
This method is fourth-order in space and second-order in time. The dis-
advantage lies in the fact that it requires 2t least one more order of
magnitude in computing time and considerably more storage space than,
for example, a Lax-Wendroff second-order scheme.

Crowley (1968) has performed a similar analysis including a compari-
son of the accuracy of solutions obtained using advective form and conser-
vative form of the describing equations. Tnese results were obtained -

for longer integratior. times but generally agrea with those of Molenkamp.




In addition, Crowley concludes that the conservative form of the governing
equation is preferred over the advective form.
The test problem which Crowley and Molenkamp have used assumes that

advection of a quantity A is governed by the differential equation

..aﬁ._ué&_v@.& (1)

ot ox oy

where u and v are the velocity components in the x and y directions
and t is the time. This equation can be put in conservative form if

the divergence of the velocity vanishes as

¥
+
e

=0 . (2)

The nonhomogeneous terms vanish and the conservative form of (1) becomes

A | d(uA) | d(vA)
3t t 3y =0 . (3)

The conservative form (3) and the advective form (1) describe the same
physical phenomena (assuming Div V = 0) and should provide the same
solution for a given set of initial data. Since numerical solutions
are obtained on a finite grid, the solutions to (1) and (3) are different
except in the limiting case as At, OAx and Ay approach zero.

A particularly simple model of the advection process can be studied
when the velocity field is prescribed and due to a rigid body rotation
of angular velocity { about some axis. In this case, the advective

form may be written in polar coordinates ar

o4 b
ot "% =0 (%)

=
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where 8 is the angular coordinate. This is just the simple one-dimen-

sicnal wave equation which has the solution
A(r’ e, t) = Ao(rs e - Qt) (5) -

where r is the polar radius measured from the axis of rotation and Ay is
the initial distribution of A. The initial distribution is rotated
through angle €lt. This is the correct solution to either the advective
form or the conservative form of the governing equation.

Application of numerical differencing methods to this simple problem
provides a rough comparison of the usefulness of the methods in modeling
the advection process. Unfortunately, the velocity field usually depends
upon t and is coupled complexly to the advected quantity A in the real
problem. However, by solving the numerical problem in a rectangular
coordine:e system, some of the nonlinear character of the original
problem is retained.

In the following sections, several numerical techniques are reviewed
which have been applied to high speed gas dynamic and aerodynamic problems
with great success. Phase error and amplitude plots are constructed and
the methods are applied to the conservative form of the advection equation.

The results obtained are compared with those of Molenkamp and Crowley.
2. Differencing Methods

The numerical techniques used in this study have been developed for

hyperbolic systems of the form:

&,
ot + Ox 0

(6)

ket
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where E and F may be N component vectors and x may be of arbitrary dimen-

sion. The techniques are based upon the Runge-Kutta method and are

explicit in advancing the solution forward in time.

MacCormack's Method MacCormack (1969) develcoped a noncentered second-

order method which has been used extensively in solving gas dynamic

problems involving strong shock waves. This technique consists of a

two-step predictorr-corrector sequence of the form

~n+l n AT n

= - == - 7

Ej Ej Ax (1 eA)AFj D)
A

n+l 1 n ~n+l 1 AT ~n+l
E : [EJ + ] ] - 28 (14 e (8)

where the tilde represents values at the intermediate step and

AFj s Fj+1 - Fj

9
VF, =F, - F .

3 3 -1

The value of ¢ can be either O or 1. 1f € = 0, the predictor uses a

forward difference and the corrector uses a backward difference on Fj.

1f ¢ = 1, the differencing in the predictor and corrector are reversed.
This method was derived using staggered differencing with the con-

straint that both left and right moving waves bc properly computed.

In additiun, the method satisfies the perfect shift condition. If the

simpie one-dimensional wave equation is considered

u . gu
x Y o 0 (10)
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a solution may be written
u(x, t) = u(x - cAt, t) . (1)
1Ifv-= S%i, then it follows that
u(x, t) = u(x - pydx, t) . (114)

For a finite difference mesh the perfect shift condition

u =u v=+mm=1, 2, ... (12)

is satisfied where y is the Courant number.

MacCormack's method car be viewed as a version of the Lax-Wandroff
method. The use of noncentered differences is advantageous since only
values on the mesh points need be computed. This eliminates difficul-
ties encountered in storage shifting and results in a considerable
reduction in computer time. Kutler, Lomax and Warming have recently
extended this method so the predictor can be evaluated at any fractional
time step. Only values at (n + 1)At were used in this study.

MacCormack's method is readily extended to two-space dimensions and

when applied to (3) becomes:

~n+1 n LT n n
TV DN [(1 =AYy g - (L 260 (uh)y

i) i,]

n AT - n
SN Y [a - epen} |,

- ey(vA)n 1] (13)

- 11 - 2¢))(VA)] Ly

3

¥y

Hggs I N o




a+l _ 1 {,n An+l] 1 AT ~, 0+l - ~
4,572 [Ai,j ¥ Ai,j] 3 i [ex‘“A'i+1,j * (L= 2e)(uh)y Ly
~ n+l AT ~ n+l
* (e, - 1)(““1-1,3'] ¥ bz [ey(QA)i,j+1
N T +1 +1
» _ g n - ~ n
P2 )@ v e - e ) (134)

Since the € parameter can change in both the x and y direction, a ques-
tion arises in sclecting the best values of the €'s to use. MacCormack
(1971) suggests that the values of €, and €y be cyclically permuted to

obtain results which are spatially unbiased. The allowable values of

the €'s are:

. R . Tl . DR e T - ;@
R N L T e . . R : A
G A SRS AL S BT B TPRERTONP M, TN sy e L L DaD 7

€, = 1 €y = 1
e. =1 €, =1
X
y (14)
€ = 0 ey =1
€ = 0 ey =.0 .

Only values €y = ey = 0 were used in this study. That is, only forward

prediction-backward correction was investigated.

The statility of this method was investigated in detail by MacCormack

and his results show that stability is assured if

vl <1 (15)

where v is the Courant number given by

AT .

Vo : - '
. S s, WU ORPUIIC TIN5 0 13 AN R W A A

and ¢ represents the eigenvalues of th. Jacobian matrix OF/JE which

arises in the stability analysis of (6). The stability bound {s derived

e h e e - Ao
[P
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by noting that the absol:te value of the eigenvalues of the amplifica-
tion matrix must be less than one where the eigenvalues cf the matrix

are given by
XA =1 - iy sin 6 - v2(1 - cos B). (15)

In the application of this method to the one-dimensional wave Eq. (10),
the amplification factor of the scalar difference operator is given by
(16) where the Courant number is written as cAT/bx.

it is instructive to consider the phase angle and amplitude of the

one-dimensional amplification factor
. 2
€ =1- iy sin 68 - ¢ (1 - cos 8) .
The magnitude is given by
1/2

lg] = [1 - v2a - v - cos 7] an

and the phase is given by

¢ = tan! In(8) . tan”! [ -y 8in © ] (18)

Re (%) 1 - v2(1 - cos 6

As noted by Crowley (1968), the relative error in amplitude is given
by 1 - \§| and the relative phase error is 1 - ¢/8y when the solution
{s advanced in time. Figure 1 presents contour plots of constant ‘%‘
for values of v and the reduced frequency 6/m. The contours shown in
Fig. 2 are lines of constant - ¢/9y. These plots show that both phase
and amplitude errors increase with 6/m for a given value of y. The
amplitude error is small at low values of v. The amplitude error is

small sgain at large values of y. The pnase error does just the

3
L4




s of amplitude and phase

opposite. The amplification factor and the plot

angle are the same as were presented for the Lax-Wendroff method by

Crowley. The amplification factor for these two methods is identical.

Rusanov's Method Rusanov (1970) and Burstein and Mirin (1670) simul-

e based on application of the

taneously developed a third-order schem

"this technique has

Runge=-Kutta method. Due to its recent development,

problems as MacCormack 's

not been as extensively applied to fluid flow

SRR

method. Taylor, Ndefv and Masson (1972) and Anderson and Vogel (1971)

have presented comparative solutions using both Rusanov's and MacCormack's

hird-order method possesses

methods. They have concluded that the t

greater flexibility in problems where larger variations in flow field

properties occur. It should be noted that the results of those inves~

= .
- tigations were for shocked flows and represent relatively short compu-

tation times with large changes in the flow field dependent variables.

The third-order Rusanov method applied to che hyperbolic Eq. (6)

is

A B3 G ) -5 O )

(1) (1)

(2 g . 2808 .
Ej Ej 3 Ox Fj+1/2 Fj-l./z

n+i -E

n 38T [ ,p(D (1) _ (D) (1)
EJ ) "8 o [ W + P i + 2Fj_2]

38T [(2) _ §(®
=3 [Fya1 - Fa-1




This third-order method was developed using centered differences. The
perfect shift condition is also satisfied for a Courant number of one
and the proper choice of the  parameter. The omega term in the third
step is a fourth-order difference required for stability. Since it is
fourth-order, the third-order accuracy of the method is unaffected by
its addition,
The stability analysis of this technique has been carried out
in detail by Burstein and Mirin (1970). Their results show that the

stability of the system is assured if

lvi <1
and
w? -V s wes (20)
" The application of the Rusanov method to the linear Eq. (10) produces

the amplification factor of the scalar difference operator which is

2
-l - K 2 2w 48
E =1 2 sin® © 3 sin 2

- iy sin © [1 + % (1 - u2) sin2 %] (21)

Contour plots of phase and amplitude are presented in Figs. 3 and 4.
An additional difficulty arises in presenting this data since the factor

W appears as a parameter free to take on values within the stability |

"}; bounds given in (20). The only possible contours that can be constructed
R and i terpreted are those for which @ = 3. The lower bound on w pre- '
dicted by linear thoery depends upon the Courant number. As a result,

the curves for any value of () less than 3 would violate the stability
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bound over some range of \v‘. Figure 3 presents the constant magnritude
contours for \g\. In contrast to the second-order method, the largest
damping occurs at midrange values of wave number while at both high and
low wave numbers relatively little damping occurs. In comparing the
gecond and third-order amplitude contours, it appears that little is
gained by using the higher order. The phase error contours show an
improvement.

These results are better understood if the modified equation pro-
duced by applying each method to the wave Eq. (10) is examined. Applica-
tion of MacCormack's method to the linear wave equation results in the

modified Eq.

3
3u,edu . L 20 -0 2N ~
3t + = - " 6 cAx (1L - v)) 3 + v (22)
ox
while the Rusanov equation becomes
T SOV P 7] 2y
2t T X 24 y "WV e
c 4 2 & Bsu
- = chx [Sw-A-ISv +lou]——+... (23)
120 axs

Kutler, Lomax and Warming observed that the lowest order term is the
modified equation representing dispersion or phase error was a third
derivative term in the gecond-order case while in the third-order method,
the lowest order dispersive term {s a fifth derivative. For both methods
the lowest order even, Or dissipative, term is 8 fourth derivative. One
might expect that improvements in moving to the third-order technique

should result from a decrease in phase error. This conclusion was

verified by Kutler, Lomax and Warming (1972) for shocked flows.
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Application to the case of non-shocked flows is discussed in a later

section,

The Kutler-Lomax-Warming Method Kutler, Lonax and Warining (1972)

have developed a noncentered version of the Rusanov scheme. There are
two major differences between their technique and the original third-
- E order Rusanov method.

The K-L-W method uses noncentered differences and uses the MacCormack
method {evaluated at 2/3AT, for the first two steps while the Rusanov
third level is used. This results in less computer storage and coupu-
= tation time since onlv values at each mesh point are required. The
7;f other difference is that the fourth-order w term has been differenced

in a conservative manner so that the value of w can be altered during
the calculations. If the w term is dif{ferenced as in the Rusanov method
and altered during computation, incorrect wave speeds occur in the numer-

ical solution.

The K-L-W method applied to the wave Eq. (6) takes the form

o (1) _gn _ 2 AT - n o _ . n_ n
o =550 =€) - 24 B1 OF],; - (1 - 20F] erj_l]
@ _1fen, o] L LA [ 4 o1 - 200rD 4 (e - 1FQ
EJ 2 [Ej + Ej ] 3 {Ax [eFj+1 + (1 ZG)FJ + (€ I)Fj_l]}

En+1 - E" - i+1/2 [En -3

n n
j j 2“ + 3E - Ej'l]

n
j42 "~ Egn j

""1-1[2 n o _ .0 n ‘_n
T [Ej+1 3] + 38, EJ_Z]

R 1 AT [_ ,p0 n o _ aon n
; " 9% Bx [ 2Fj+2 + 7Fj+1 7FJ_1 + ZFJ-Z]

30T [(2) | (@
38 - Al (26)

.-.‘
‘1
!
]
U
A
,'l
!
B )
)
]
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The form of this method applied to the two dimensio:aal sample problem

-.; reads:
(1) n 2 AT [ n n 2 AT n n
TR AL TR, T T ax (W (ad)y) J‘ 3 By [“’ Yi,5¢1 " (VA)i,_]]
. 3 .
g f (2) l{n (1) 2 AT (L (D) 2m[ (1) (1 N
& A == 1A - 242 - - £ 82 - -
TR WA CWRENWES 5 CONGRRCIHN S - (29 SEHRY
b
_% . (u§)n
ntl _un_* 12,4 [0 n n o, ]
i A5 " AL 2 Piv2,5 7 PR, T 3R AL )
g
H ()"
£ i-1/2,i [,n n n n
o MY 41,5 T 35 YA Ai—Z,j]
i-é (u§)n
g - i, ij+l/2 [,n _ aal n _ AR i
_. E 24 Aigez T3 TR A
L (uay)n
v i.i-1/2 {,n . n n _ LN ]
T I A
- UL [AT [ n n - u n 1
) | 24{ L [ 2u) [, 4+ T, - T)) s 287, ]
: AT [ n . n . n n
; + & l 20M)] Jp ¥ TOMT - T e 2(vA)i’j_2]}
3
; DA @ L@ T AT [ @ 2
s \ax (W54, RIS SN S|
Tt where functionally
SRR
RO N n n
S @) - w [o™ ]
. f % i+l1/2,) x[ X 1+41/2,3 -

(26)
)R n

o ( - @ [
B %1+1/2,j w"[ y

1,j+1/2]

RS Bt e G e D TS T
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and

w)" - {-[(xxf‘ coot w et w0t &

i+l/2,j i+2,] i+l,] i,] i-l,jJ

w)" = '};[(k " + )" A O W iy ~
Y 1,3+41/2 Y 1,342 Y i,54 Y'i,i Y i,5-1) %

27)

This method has the same stability bounds and magnitude as the
Rusanov method and phase angle plots shown in Figs. 3 and 4 for Rusanov's
method are applicable.

Kutler, Lomax and Warming obgerved that this third-order method
usually produced better results in problems involving large changes in
the dependent variables than did second-order techniques. However,
some sensitivity of the results to variations in the local eigeavalue
structure led them to attempt to “tune" the method at each step by
changing the value of the  parameter.

Application of the K-L-W method to the simple wave Eq. (10) results
in the modified differential Eq. (23) common to third-order Runge-Kutta
methods. To reduce the dissipation of the method, the w parameter should
be selected to minimize the fourth derivative term. 1f the coefficient

of this term is set equal to zero then
w= 41}2 - v" (28)

which is lower stability bound as predicted by linear theory. If
minimum dispersion is desired, the coefficient of the fifth-order tem

is set equal to zero giving

2 2
O)'LQL-', ]:;)(lt'll)_ . (29)
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Results presented by Kutler, Lomax and Warming (1972) show that an im-
provement in the solution is achieved if  is altered according to
either of these schemes. It should be noted that the value of vy appearing
in (28) and (29) is the local value of the Courant number. The W and
a@ of (26) are thus determined through (28) and (29) with the appropriate
values of y given in (27).

The amplitude and phase error contour plots for the variable w cases
are presented in Figs. 5 through 8. The minimum dissipation amplitude
plot in Fig. 5 shows that the ''tuned" third-order method is less dissi-
pative than the second-order technique. The effect of changing w to
eliminate the first even term in the modified equation clearly reduces
the damping. Thia should be compared with Fig. 7 which is also an ampli-
tude contour plot but for minimum phase error as provided with ( deter-
mined through (26). 1t is apparent that the damping is greater in this
case but only below Courant numbers of about 0.6. This should have
been anticipated since the allowable range of () is restricted at higher
Courant numbers and the method becomes less sensitive to the value of w
used.

The phase angle contours show that the minimum dispersion case in
Fig. 8 provides a smaller phase error over the entire range of stable
values of vy than the minimum dissipation case shown in Fig. 6. On the
basis ofi the amplitude and phase angle plots one would expect results
using the "tuned' K-L-W method to be superior to the constant ( third-

order methods. Application to a problem justifying this conclusion is

presented in the following section.
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3. Numerical Calculatioms

A simple velocity field is prescribed over a coordinate mesh if
it is assumed that it is produced by solid body rotation about some axis.
In this case the divergence of the velocity field is zero and the con-
s~ivative form given in (3) is valid. The initial distribution of A is
shoson to be & cone of unit altitude at the center decreasing to zero

at *he base radius of four cell widths. The following data were held

constant during the calculations unless otherwise noted:

n = number of time steps = 40

Q = rigid body angular velocity = - .001 radians/sec

At = time step = 30 seconds

Ax = Ay = A = 1,0 = mesh size
Center of rotation (12, 12)
Center of initial A distribution (18, 12).
A schematic representation of this problem is shown in Fig. 9.
Figure 10 presents the results of using MacCormack's method with

e forward predictor, backward corrector while the results obtained with

oy PO SN

a tackward predictor, forward corrector are shown in Fig. 11. The results

in both cases are similar in terms of corr.ctly advecting the center of

S AR

the disturbance and in reproducing contours cf constant A. The results

3 are very similar to thes e produced using the Lax-Wendroff method as
» reported by Fattahi (1971).
%
f: The Rusanov third-ordcr method using w = 3 was applied to this prob-
¥
v lem and the results are shown in Fig. 12. These results are not very
&
v
N encouraging. However, a more detailed analysis of the situation produces
Y
R some important information. The Rusar>v method has been shown to produce
¥
3.,
3

R AT
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results which are unfavorable when the Courant number is nct close to

L

one and the upper limit value of 3 is used for w. In this problem the
mesh ratio is AT/A = 30 which gives an effective Courant number of
approximately 0.35 based on the maximum velocity. This means that the
local Courant number at each point in the mesh is less than or equal to

0.35. Referring to Figs. 3 and 4, the i:ost dissipative and dispersive

=
é
E:

regions of the Rusanov method lie in this range. This is the resson for
the poor results shown in Fig. 12, It is interesting to note that the
MacCormack method provides a better solution for this case thin the
third-order Rusanov technique. Figs. 1 and 2 show that less dissipation
and dispersion are introduced in the solution using the MacCormack methkod
for the range of effective Courant numbers encountered in this numerical
example. For this case the minimum value of @ for stability required

by the Rusanov method is approximately 0.5 while the maximum value is 3.
Calculations using values of  near the lower bound have resulted in
good solutions for problems involving shocked flows like those of Kutler,
Lomax and Warming {1572) aud aisc fcr the aample problem preserted here
by Burstein and Mirin (1970) and Fattahi. Values of w near or below

the linear stability bound result in excellent solutions for shocked
flows. Fattahi (1971) reports a similar conclusion and, in solving

the exact problem as presented here, notes that an  value of about 0.6
produces the best results. This {s shown in Fig. 13. Solutions obtained
with w below the linear stability bound provide excellent results for

short integration times. For long integration times the solution

eventually becomes unatable if a value of  outside the allowed range

is used.
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The problem of gselecting the proper value of w is alleviated if
the Kutler-Lomax-Warming technique with either minimum dispersion or
dissipation is used. Figures 14 and 15 present the results of these
calculations for a time step of AT = 30 seconds. The minimum dissipation
case provides better results at this value of AT. Referring to the am-
plitude contours for these two methods revecls that the damping is
severe for the minimum dispersion case at low Courant numbers. This is
apparent if the maximum advected value is compared for these two cases.
This type of problem is evidently more sensitive to dissipative errors
than errors in phase angle. Kutler, Lomax and Warming (1972) concluded
that the minimum dispersion provided better results for their work
involving shocked flows. The difference in the results using the two ways
of calculating w diminishes as the linear stability bound is approached.
Solutions for a time step of AT = 75 sec are shown in Figs. 16 and 17. As
noted from the damping and phase error curves, the results obtained sbould
be similar. However, the minimum dissipation golution still appears to

be more satisfactory.

4. Conclusions

A comparison of relative errors and computation times are presented
in Table 1. Based on accuracy in terms of maximum advected val ue, phase
error and error in the radius of the center location, the third-order
methods are usuclly better unless relatively low values of Courant
number are coupled wich large values of w- The third-order methods
require the same magnitude of computer time as MacCormack's method.

They are still an order of magnitude faster than the fourth-order space,
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second-order time Robcrts and Weiss method. Although this techniqu- was
not investipated here, Molenkamp {(1968) has reported the relative time
required for its use.

Of the methods tested, the Kutler-Lomax-Warming method tuned for
minimum dissipation provides the best comparison with the exact solu-

tion. This method should be studied in more detail. In particular

results using the various combinations of the ¢'s defined in (14)

should be compared. The results reported here used a forward predictor

and backward corrector to advance to 2/3AT and central differencing in
the third step. In addition, application should be made to more com-
plex problems to assess the usefulness of the technique of altering
the stability parameter w during the computation. While the eigen-
value structure required in choosing the proper w in a complex problem

is aifficult, reasonable approximations can be made. The increase in

accuracy of the resulting solution far outweighs the additional effort.
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Constant |E| contour for MacCormack's second order method.
Contour of - ¢/6a for MacCormack's second order method.
Constant |g| contours for Rusanov Method with w = 3.0.

Phase angle for Rusanov r:thod with w= 3.0.

Constant \§\ contours for K-L-W Method for minimum dissipation.

Relative phase error for the K-L-W Method tuned for minimum
dissipation.

Constant {g\ contours for the K-L-W Method with minimum
dispersion.

Contours of - ¢/8a for K-L-W Method with minimum dispersion.

Schematic representation of the advection problem showing
the initial A distribution.

Sclution using the MacCormack (forward predictor, backward
corrector) Method.

Solution using the MacCormack (forward predictor, backward
corrector) Method.

Solution using Rusanov's Method with w = 3.0.

Solution using the Rusanov-Burstein-Mirin Method, w = 0.6,
AT = 30,

Solution using the K-L-W Method tuned for minimum diesipation
AT = 30 sec.

Solution using the K-L-W Method tuned for minimum dispersion
AT = 30 sec.

Solution using the K-L-W Method tuned for mirimum dissipation
AT = 75 sec.

Solution using the K-L-W Method tuned for minimum dispergion
OT = 75 sec.
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